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1. Location Refinement (LR)

▷ Accompanies/follows localization
▷ Adjust initial estimate

o precision↑, accuracy↑, resolution↑

o Ensemble LR, Motion-based LR, Collaborative LR
4

optimal 
result

a family of 
positioning 
functions

spatial 
constraints

IoT measurement location



Ensemble LR

▷ : individual, multivariable, single time point
o Different components measured by different sensors

▷ Single-source methods
o Aggregate                          by a single process
o Weighted kNN and its variants [Fang et al., 2018]
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Ensemble LR (Cont.)

▷ Multi-source methods
o Fuse multiple procedures
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NB: multi-aspect information 
from a more complex deployment 

setting -> higher accuracy

improved_KNN (candidates <- DNN(·))

[Dai et al., 2019]

weighted_least_squares (WiFi fingerprinting，Dead Reckoning)

[Chen et al., 2018]



Motion-based LR

▷ : individual, sequential, single-variable or 
multivariable
o Motion dynamics, spatiotemporal dependencies
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Bayes Filters (Kalman filters, Particle filters, 
etc.) [Wu et al., 2016]

Pro: easy-to-implement
Con: intricate dependencies

Probabilistic Graph Models (HMM, CRF, etc.) 
[Liu et al., 2012] 

Pro: incorporate domain knowledge
Con: non-discrete locations

Sequential Neural Networks  (e.g., RNN 
[Hoang et al., 2019])

Pro: complex scenes
Con: training data volume

Opportunity: decentralized computing setting?



Motion-based LR (Cont.)
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Bayes Filter [Wu et al., 2016] 

Particle Filter, a sequential Monte 
Carlo process

PGM [Liu et al., 2012] 

HMM(S, 0, A, B, π)

S: grid-based locations

RNN [Hoang et al., 2019] 



Collaborative LR

▷ : multiple objects, single time
o Refine object locations collectively

▷ Joint Denoising [Zhang et al., 2019]
o System noise, statistical hypothesis

▷ Iterative Optimization [Chen et al., 2017]
o Random errors, evolutionary computation

▷ Opportunity: data and control coordination
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Collaborative LR (Cont.)
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Joint Denosing 

[Zhang et al., 2019] Gaussian errors for CNN 
location estimator

Gaussian Process Regression

Iterative Optimzation 

[Chen et al., 2017] 

Trilateral estimates are particles

Particle Swarm Optimization (PSO)
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1 image originally from [Ahmadi et al. 2010]



▷ Most LR techniques rely on probabilistic modeling

▷ Markovian widely utilized in motion-based LR;
o Spatial constraints -> Particle Filters and PGMs

▷ Motion-based LR compared to Ensemble/Collaborative LR
o Higher accuracy but more ground truth to parameterize models
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2. Uncertainty Elimination (UE)

▷ Reduces uncertain/imprecise measurements, 
imputes values at unsampled points
o precision↑, completeness↑, resolution↑, time sparsity↓

▷ UE for trajectories and spatiotemporal IoT data 
(STID)
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Trajectory UE

▷ Smoothing-based
o Temporal autocorrelation, volatility
o Moving averages, exponential smoothing, and random walks

▷ Calibration-based
o Reference points/ranges from maps [Su et al., 2013] or 

extracted from collective trajectory data [Li et al., 2020]

▷ Inference-based 
o Structural regularities, restore underlying path
o Explicit (topology) and implicit (observations)  [Wu et al., 2016]
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Trajectory UE (Cont.)
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Calibration-based

[Su et al., 2013] 

Anchors from maps and trajectories

Calibration-based

[Li et al., 2020] 

Skeleton points from 
trajectories only

Inference-based [Wu et al., 2016] 

Posterior over historical trajectories



STID UE

▷ Spatiotemporal interpolation
o Unsampled location-time points
o Spatial-interpolation-primitive (shape function, inverse distance 

weighting, Kriging, etc.)
□ Tobler's first law: near things more related than distant things

o Time-interpolation-primitive (neighbor-based, regression-based, 
matrix factorization, LSTM/GRU, etc.)

o Space and time simultaneously [Li et al., 2011] [Appice et al., 
2013] 

▷ Data fusion: calibration models [Okafor et al., 2020]
o Additional relevant and reliable data sources?
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STID UE (Cont.)
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[Li et al., 2011] 

Shape function: time as imaginary 
third dimension z.

Online: nearby key sensors, 
temporally interpolated 

values -> IDW based 
interpolation

Offline: trend cluster -> key 
sensors as a polynomial time 

interpolator

[Appice et al., 2013] 



▷ Calibration/inference-based UE utilize spatial constraints and collective 
trajectories

▷ Smoothing-based UE -> varying smoothly and Markovian
o Stream computing, fog/edge computing

▷ Interpolation -> spatiotemporal dependencies
o Varying smoothly, spatially autocorrelated/anisotropic
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3. Outlier Removal (OR)

▷ Deletes items that do not conform to their context
o precision↑, accuracy↑, consistency↑

▷ OR for trajectory points and STID
o Anomaly trajectories? A business layer task
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Trajectory Point OR

▷ Location points corresponding to unexpected 
abnormal mobility behavior
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Constraint-based
neighborhood information

Speed thresholding [Zheng, 
2015]

Pros: easy-to-implement
Cons: dynamic and noisy 
trajectories?

Statistics-based
statistical profiling of a 
trajectory or a trajectory set

Z-test using a combination 
of distance, speed and 
acceleration [Patil et al., 
2018]

Pros: controllable and 
explainable
Cons: availability of 
historical trajectories?

Prediction-based
compare with predictions

Iterative minimum repair 
with an ARX model [Zhang 
et al., 2017]

Pros: data repairing
Cons: achieve accurate 
predictions?



STID OR

▷ W.r.t spatial/temporal/spatiotemporal neighbors
o Temporal outliers [Gupta et al., 2013] [Blázquez-García et al., 

2021]
o Spatial outliers (fundamental step) -> spatiotemporal outliers  

[Aggarwal, 2015]

▷ Spatiotemporal OR
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Neighborhood-based Spatiotemporal DBSCAN 

[Birant et al., 2007]

Decoupling of spatial and 
temporal aspects

Set theory-based Rough/kernel set [Albanese 
et al., 2012]

Holistic, simple data 
attributes



▷ Probabilistic modeling, spatiotemporal dependencies and regularity, spatial 
constraints
o Some follow unsupervised learning paradigm

▷ Constraint/prediction-based approaches can be implemented a stream 
computing fashion
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4. Fault Correction (FC)

▷ Repairs wrong and conflicting data values
o accuracy↑, consistency↑, completeness↑

▷ Symbolic trajectories and STID
o Each location in a symbolic trajectory is an ID of the 

sensor that detected that object at that time, e.g., RFID 
tracking sequences
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Symbolic Trajectory FC

▷ False Negatives (dropped readings) – a sensor fails to detect a tag (object)

▷ False Positives (duplicated readings) – a sensor fails to detect tag movement
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Probabilistic 
modeling

Regularities of sensor-
tag interactions

Spatiotemporal 
dependencies

Spatial constraints

[Jeffery et al., 2006] Tag as random 
sample 

Per-tag and multi-tag
cleaning

Smoothing filter

[Chen et al., 2010] Bayesian 
inference

Likelihood that a reader 
reports an object

MCMC-based 
sampler

Resource descriptors

[Fazzinga et al., 2016] Probabilistic 
trajectories

Conditioned trajectory 
graph

Conditioning over 
time

Unreachability, 
traveling time, latency

[Baba et al., 2016] Multi-variate
HMM

Emission probabilities Transition 
probabilities

Deployment, hidden 
state semantics



STID FC

▷ Correct faulty thematic values
o Neighboring/correlated homogeneous sensors [Pumpichet et al., 2012]
o Cross-validation of heterogeneous sensory information [Kuemper et 

al., 2018]

▷ Correct imprecise timestamps
o Staleness: spatiotemporal dependencies [Milani et al., 2019]
o Inconsistency: temporal constraint violations [Song et al., 2016]
o Disorder: K-slack that buffers the arriving data for K time units for 

reordering, distributed setting [Mutschler et al., 2013], heterogeneous 
network setting [Liu et al., 2009]
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▷ Spatiotemporal regularities and dependencies from existing data

▷ Correcting incoming symbolic trajectories by data-driven models

▷ K-slack for disorder resolution in a stream and/or distributed computing 
mode
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5. Data Integration (DI)

▷ Unified data representation 
▷ Comparing, combining, and fusing data collections 

from multiple sources
o accuracy↑, completeness↑, data volume↑, resolution↑, 

interpretability↑

▷ Semantic DI and non-semantic DI
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Semantic DI

▷ Enriches interpretability of SID

▷ Semantic DI for trajectories: concepts or events  -> raw traces

▷ Semantic DI for STID: geo-semantic meta information
o Reasoning system [Maarala et al., 2016], Web of Things ontology [Wu et al., 2017]
o Opportunity: dynamically evolving semantics 27

[Wu et al., 2015] [Nogueira et al., 2018] [Liao et al., 2007] [Yan et al., 2013]

Semantic aspect Social media posts Semantic web concepts Transportation 
location/mode

Stop/move and 
POI categories

Method Relevant word 
extraction using kernel 
density estimation 
(KDE) 

Self-defined functions to 
map spatial features to 
tags/ontology instances

Hierarchical CRF 
to map GPS data 
to transportation 
concepts

Speed-based stop 
identification. 
HMM to infer POI 
category

Significance Dynamic semantics 
enrichment

Reasoning/analysis of 
trajectories

Unsupervised (EM) 
method

Third-party 
semantic sources



Non-semantic DI

▷ Multi-angle spatiotemporal observations
o Consistency and reliability
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Trajectory STID

unified trajectories

formats [Peixota et al., 2018] 
resolutions [Zhang et al., 2019-2] 

ID systems [Jin et al., 2020]

enriched trajectories

comprehensive urban analytics 
[Zhang et al., 2014]

measurement fusion

multisource remote sensing data 
[Zhu et al., 2018]

spatial and temporal commonality



▷ Semantic DI for trajectories: spatiotemporal data regularity
o Geo-semantics, spatial constraints, personal preferences

▷ Semantic DI for STID
o Edge computing and stream computing

▷ Non-semantic DI utilizes spatial and temporal commodities
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6. Data Reduction (DR)

▷ Converts a data collection into a corrected and 
simplified form

▷ Eliminate meaningless items, 
Reconstruction/Summary
o data volume↓, latency↓, redundancy↓

▷ Trajectory compression
▷ STID reduction
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▷ Lossy solution: Compression ratio (size, number) vs compression loss (error, cost)

Trajectory Compression
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Offline (all points are accessible) Online (only buffered points are accessible)

Free-space
(raw) 

Trajectory

• ε-simplification (Hausdorff) with least space-location points 
(min-# problem), Douglas–Peucker (DP) [Cao et al., 2006]

• Min-distance-preserving-error with a fixed #, binary search 
strategy [Long et al., 2014]

• Min-max (DTW) of using sub-trajectories as references, 
greedy and optimal algorithms [Zhao et al., 2018]

• ε-bounded and time-limited, wireless 
communication cost reduction with dead 
reckoning [Lange et al., 2011]

• Min-SED, priority queue [Muckell et al., 2011]
• Min-geometric-error, convex hull bounding [Liu 

et al., 2015]
• Min-SED, cone intersection [Lin et al., 2019]
• Min-error as MDP [Wang et al., 2021]

Network-
constrained

(map-
matched) 
trajectory

• Min-# against road segment discontinuity, adapted model + 
DP + SED metric [Popa et al., 2015]

• Encoding spatial paths/time sequences [Han et al., 2017]
• TED (encoding timestamps, relative spatial path, and 

distances) [Yang et al., 2017] 
• Retrieval, compressed substring index [Koide et al., 2018]
• Probabilistic trajectories, referential +TED [Li et al., 2020-2]

• Heading change based compression [Chen et al., 
2019]

• Transmission cost at edge, referential 
representation online fashion [Li et al., 2021]



STID Reduction

▷ Compression-based: batch processing

▷ Prediction-based: drop data if predicted error is acceptable
o Reduce communications among IoT nodes: Regression [Carvalho et al., 

2011], KF [Yin et al., 2015], CNN+LSTM [Zhang et al., 2018]
o Robustness/timeliness?
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Lossless
accuracy-oriented 

• Golomb-Rice codes [Tate et al., 2015]
• Gaussian approximation + lossless margins [Abuadbba et al., 2017]

Lossy
higher compression ratio

• Lightweight temporal compression algorithm [Li et al., 2018]
• SVD (singular value decomposition) [de Souza et al., 2015]
• Compressive sampling + Gaussian Mixture Model [Tripathi et al., 2018]



▷ Spatiotemporal data dependencies widely utilized for DR

▷ Prediction-based DR challenged by robustness and timeliness of prediction 
models

▷ Edge computing
o Reduce data at resource-scarce IoT edge devices
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